Memory of Chirality in Diastereoselective α-Alkylation of Isoleucine and *allo***-Isoleucine Derivatives**

2000 Vol. 2, No. 24 ³⁸⁸³-**³⁸⁸⁵**

ORGANIC LETTERS

Takeo Kawabata,* Jianyong Chen, Hideo Suzuki, Yosikazu Nagae, Takayoshi Kinoshita,† Sirirat Chancharunee, and Kaoru Fuji*

*Institute for Chemical Research, Kyoto Uni*V*ersity, Uji, Kyoto 611-0011, Japan*

kawabata@scl.kyoyo-u.ac.jp

Received September 20, 2000

ABSTRACT

CO₂Et i) KHMDS CO₂Et N-Boc Me ii) Mel (93%) **MOM** Boc¹ **MOM** $5(93% ds)$ 2 CO₂Et i) KHMDS CO₂Et Me N -Boc Boc = CO₂tBu Boc^{.N}MOM ii) MeI (91%) **MOM** $MOM = \overline{CH}_2OMe$ $6(86% ds)$

r**-Methylation of 3 gave 5 as a major product whereas 4 gave 6 predominantly, although both 3 and 4 have an (***S***)-chiral center at C(3). This indicates that chirality at C(2) in 3 and 4 was memorized in the corresponding intermediate enolates and the induced chirality made a major contribution in the stereochemical course of the reaction, while chirality at the adjacent chiral center C(3) had little effect.**

Nonproteinogenic α , α -disubstituted- α -amino acids have attracted considerable attention because of their utility as conformational modifiers of biologically active peptides and as enzyme inhibitors.¹ Typical methods for their asymmetric synthesis involve chiral auxiliary-based enolate chemistry.^{2,3} However, we developed a direct asymmetric α -alkylation

(3) Recently, excellent catalytic methods for asymmetric synthesis of α , α -disubstituted- α -amino acid derivatives have been developed, see: (a) Kuwano, R. Ito, Y. *J. Am. Chem. Soc.* **1999**, *121*, 3236. (b) Ooi, T.; Takeuchi, M.; Kameda, M.; Maruoka, K. *J. Am. Chem. Soc*. **2000**, *122*, 5228.

10.1021/ol0066274 CCC: \$19.00 © 2000 American Chemical Society **Published on Web 11/05/2000**

of α -amino acid derivatives without using any external chiral sources.4,5 For example, phenylalanine derivative **1** undergoes α -methylation to give 2 in 81% ee and 96% yield upon treatment with potassium hexamethyldisilazide (KHMDS) followed by methyl iodide. We proposed the chiral nonracemic enolate intermediate A^6 with a chiral C(2)-N axis as a crucial intermediate for this asymmetric induction.4c We report here the stereochemistry of the α -alkylation of L-isoleucine derivative **3** and its C(2)-epimer, D-*allo*-isoleucine derivative **4**.

It is unclear whether the stereochemical course of the reaction of **3** and **4** is governed by the chirality at C(2) or $C(3)$. If the chiral information at $C(2)$ is completely lost with formation of the enolate, α -alkylation of either **3** or **4** should give products (e.g., **5** and **6**) with an identical diastereomeric

[†] Exploratory Research Laboratories, Fujisawa Pharmaceutical CO., Ltd. (1) (a) Horwell, D. C.; Hughes, J.; Hunter, J. C.; Pritchard, M. C.; Richardson, R. S.; Roberts, E.; Woodruff, G. N. *J. Med. Chem*. **1991**, *34*, 404. (b) Altmann, K.-H.; Altmann, E.; Mutter, M. *Hel*V*. Chim. Acta* **¹⁹⁹²**, *75*, 1198. (c) Mendel, D.; Ellman, J.; Schultz, P. G.; *J. Am. Chem. Soc*. **1993**, *115*, 4359. (d) Stilz, H. U.; Jablonka, B.; Just, M.; Knolle, J.; Paulus, E. F.; Zoller, G. *J. Med. Chem.* **1996**, *39*, 2118. (e) Chinchilla, R.; Falvello, L. R.; Galindo, N.; Na´jera, C. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 995.

⁽²⁾ For examples of *ad*V*anced* chiral auxiliaries which utilize chirality of parent α -amino acids, see: (a) Seebach, D.; Boes, M.; Naef, R.; Schweizer, W. B. *J. Am. Chem. Soc*. **1983**, *105*, 5390. (b) Vedejs, E.; Fields, S. C.; Schrimpf, M. R. *J. Am. Chem. Soc*. **1993**, *115*, 11612. (c) Ferey, V.; Toupet, L.; Gall, T. L.; Mioskowski, C. *Angew. Chem., Int. Ed*. *Engl*. **1996**, *35*, 430. (d) Vedejs, E.; Fields, S. C.; Hayashi, R.; Hitchcock, S. R.; Powell, D. R.; Schrimpf, M. R. *J. Am. Chem. Soc*. **1999**, *121*, 2460.

composition via common enolate intermediate **B**. On the other hand, if the chirality of $C(2)$ is preserved in enolate intermediates (i.e., *memory of chirality*7,8), **3** and **4** should give products with different diastereomeric compositions via diastereomeric enolate intermediates such as **C** (a*S*, 3*S*) and **D** (a*R*, 3*S*), respectively. To test this hypothesis, the α -methylation of 3 and 4 was examined.

L-Isoleucine and D-*allo*-isoleucine derivatives **3** and **4** with *tert*-butoxycarbonyl (Boc) and methoxymethyl (MOM) groups at the nitrogen were prepared from the parent amino acids in respective yields of 92 and 75%. Treatment of **3** with 1.1 molar equiv of KHMDS in THF at -78 °C for 60 min followed by the addition of methyl iodide gave a mixture of diastereomers **5** and **6** in a ratio of 93:7 in a combined yield of 93%. On the other hand, the same treatment of **4** gave a mixture of **5** and **6** in a ratio of 14:86 with a combined yield of 91%. Although **5** and **6** were obtained as an inseparable mixture, the ratio was unambiguously determined by 400 MHz ¹H NMR, and each of the pure diastereomers was obtained after conversion to the corresponding *p*-nitrobenzamides 7 and 8, respectively.⁹ The stereochemistry of 8 was

determined to be (2*R*,3*S*) by an X-ray crystallographic analysis (Figure 1).¹⁰ α -Methylation of both **3** and **4** occurred

Figure 1. X-ray structure of **8**.

with retention of configuration at C(2) with comparable diastereoselectivities (93% ds for **3** vs 86% ds for **4**). Thus, the chirality at $C(2)$ made a decisive contribution to the stereochemical course of α -methylation even in the presence of the adjacent chiral center C(3). We assume **C** and **D** for the possible structures of chiral enolate intermediates generated from **3** and **4**, respectively, by analogy with our recent results.4c The central chirality at C(2) in **3** and **4** appears to be preserved in C and D as dynamic axial chirality⁶ due to restricted rotation of the $C(2)-N$ bond.

Since the Boc and MOM groups at the nitrogen seem to be essential for the axial chirality in **C** and **D**, we next examined the reactions of *N*,*N*-di-Boc derivatives **9** and **10** that do not generate axially chiral enolates. Upon α -methylation under conditions identical to those for **3** and **4**, **9** gave a 54:46 mixture of 11 and 12 in 83% yield.¹¹ The exact same diastereomer ratio of **11** and **12** was observed in the α -methylation of 10 (87% yield). The stereochemical course of the α -methylation of **9** and **10** was totally controlled by the chirality at $C(3)$, independent of the chirality at $C(2)$, which is in sharp contrast to the reactions of **3** and **4**. These

^{(4) (}a) Kawabata, T.; Wirth, T.; Yahiro, K.; Suzuki, H.; Fuji, K. *J. Am. Chem. Soc*. **1994**, *116*, 10809. (b) Fuji, K.; Kawabata, T. *Chem. Eur. J*. **1998**, *4*, 373. (c) Kawabata, T.; Suzuki, H.; Nagae, Y.; Fuji, K. *Angew. Chem., Int. Ed*. **2000**, *39*, 2155.

⁽⁵⁾ For related asymmetric α -substitution of α -amino acid derivatives without using external chiral sources, see: (a) Seebach, D.; Wasmuth, D. *Angew. Chem., Int. Ed. Engl.* **1981**, *20*, 971. (b) Beagley, B.; Betts, M. J.; Pritchard, R. G.; Schofield, A.; Stoodley, R. J.; Vohra, S. *J. Chem. Soc., Chem. Commun*. **1991**, 924. (c) Betts, M. J.; Pritchard, R. G.; Schofield, A.; Stoodley, R. J.; Vohra, S. *J. Chem. Soc., Perkin Trans. 1* **1999**, 1067.

⁽⁶⁾ Chiral properties of **A** are time- and temperature-dependent. Therefore, we call this type of chirality "dynamic chirality". Half-life to racemization of **A** is 22 h at -78 °C: see ref 4c.
(7) Kawabata T: Yahiro, K: Fuji, K. *J. Am*

⁽⁷⁾ Kawabata, T.; Yahiro, K.; Fuji, K. *J. Am. Chem. Soc*. **1991**, *113*, ⁹⁶⁹⁴-9697.

⁽⁸⁾ The term "memory of chirality" and the related expressions have recently been used by $us^{4b,7}$ and others, see: (a) Schmalz, H.-G.; Konig, C. B.; Bernicke, D.; Siegel, S.; Pflectschinger, A. *Angew. Chem., Int. Ed.* **1999**, 38, 1620. (b) Giese, B.; Wettstein, P.; Stähelin, C.; Barbosa, F.; Neuburger M.; Zehnder, M.; Wessig, P. *Angew. Chem., Int. Ed.* **1999**, *38*, 2586. (c) Yashima, E.; Maeda, K.; Okamoto, Y. *Nature* **1999**, *399*, 449. (d) Mizuno Y.; Aida, T.; Yamaguchi, K. *J. Am. Chem. Soc*. **2000**, *122*, 5278.

^{(9) (}a) **Typical experimental procedure for α-alkylation:** A solution of **3** (152 mg, 0.5 mmol) in THF (4.5 mL) was added a to a solution of KHMDS^{9b} (0.50 M in THF, 1.1 mL, 0.55 mmol) at -78 °C, and the mixture was stirred for 60 min. Methyl iodide (0.31 mL, 5.0 mmol) was added, and the solution was stirred at -78 °C for 20 h. The reaction mixture was poured into saturated aqueousNH4Cl and extracted with ethyl acetate. The organic layer was washed with saturated aqueous NaHCO₃ and brine, dried $(Na₂ -$ SO4), and evaporated under vacuo. The residue was purified by column chromatography (SiO₂, ethyl acetate:hexane $= 1:12$) to give an inseparable mixture (154 mg) of **5** and **6** (93% combined yield) and a trace amount (\leq 4%) of 3. The diastereomeric ratio of 5 to 6 was determined by 400 MHz ¹H NMR to be 93:7. The mixture was treated with 4 M HCl in ethyl acetate followed by *p*-nitrobenzoyl chloride/*i*PrNEt₂ to give a crude mixture which was purified by column chromatography ($SiO₂$, CHCl₃:acetone = 60:1), giving a mixture of **⁷** and **⁸** (94% yield). Recrystallization from etherhexane gave diastereomerically and analytically pure **7**. (b) Brown, C. A.

J. Org. Chem. **1974**, *39*, 3913. (10) Crystal data for **8**: $C_{16}H_{22}N_2O_5$, MW = 322.36, orthorhombic, space group $P2_12_12_1$, $a = 11.841(2)$ Å, $b = 19.796(2)$ Å, $c = 7.119(2)$ Å, $V =$ $1668.7(6)$ Å₃, $Z = 4$, $D_{\text{calcd}} = 1.283$ g/cm³, m(Cu K α) = 7.98 cm⁻¹, $R =$ 0.052.

⁽¹¹⁾ The stereochemistry of **11** and **12** was determined after their conversion to **7** and **8**.

results suggests that the reactions of both **9** and **10** share a common enolate intermediate, **E**. 12

 α -Allylation of **3** and **4** gave stereochemical results that paralleled those of α -methylation. Treatment of 3 with KHMDS for 60 min followed by the addition of allyl bromide in THF at -78 °C gave 13 and 14 in a 92:8 ratio with a combined yield of 78%, while the same treatment of **4** gave **13** and **14** in an 18:82 ratio with a combined yield of 73%.

(12) Enolate **E** is not axially chiral along the $C(2)-N$ axis even if the bond rotation is restricted at -78 °C.

In conclusion, the stereochemical course of the α -alkylation of both L-isoleucine and D-*allo*-isoleucine derivatives **3** and **4** was controlled predominantly by the chirality at C(2), while that at the adjacent chiral center C(3) had little effect. The chirality at C(2) in **3** and **4** is assumed to be memorized in the intermediate enolates in the form of dynamic axial chirality along the $C(2)-N$ axis.

Acknowledgment. This work was supported by a Grantin-Aid for Scientific Research on Priority Areas (No. 706: Dynamic Control of Stereochemistry) from the Ministry of Education (Monbusho), Japan.

Supporting Information Available: Experimental procedure and characterization data of compounds **³**-**10**. This material is available free of charge via Internet at http://pubs.acs.org.

OL0066274